Dual Mechanisms of Metabolism and Gene Expression of the CCRF-CEM Leukemia Cells under Glucocorticoid Treatment

Author:

Lambrou GeorgeORCID,Karakonstantakis Theodoros,Vlahopoulos Spiros,Zaravinos ApostolosORCID

Abstract

Background: Glucocorticoids play an essential part in anti-leukemic therapies, but resistance is a crucial event for the prognosis of the disease. Glucocorticoids influence the metabolic properties of leukemic cells. The inherent plasticity of clinically evolving cancer cells justifies the characterization of drug-induced early oncogenic pathways, which represent a likely source of detrimental secondary effects. Aim: The present work aims to investigate the effect of glucocorticoids in metabolic pathways in the CCRF-CEM leukemic cells. Metabolic factors and gene expression profiles were examined in order to unravel the possible mechanisms of the CCRF-CEM leukemic cell growth dynamics. Methods: CCRF-CEM cells were used as a model. Cells were treated with prednisolone with concentrations 0–700 μM. Cell culture supernatants were used for glucose, lactic acid, LDH, Na+, K+ and Ca++ measurements. Cytotoxicity was determined with flow cytometry. Microarray analysis was performed using two different chips of 1.2 k and 4.8 k genes. Gene Ontology enrichment analysis was applied to find metabolism- and GC-related genes. Results: Higher prednisolone concentrations inhibited glucose uptake, without exhibiting any cytotoxic effects. Glucose consumption did not correlate with the total cell population, or the viable population, indicating that growth is not directly proportional to glucose consumption. Neither of the subpopulations, i.e., viable, necrotic, or apoptotic cells, contributed to this. Conclusions: Different types of leukemic cells seem to exhibit different patterns of glucose metabolism. Both resistant and sensitive CCRF-CEM cells followed the aerobic pathway of glycolysis. There is probably a rapid change in membrane permeability, causing a general shutdown towards everything that is outside the cell. This could in part also explain the observed resistance. Glucocorticoids do not enter the cell passively anymore and therefore no effects are observed. Based on our observations, ion concentrations are measurable factors both in vitro and in vivo, which makes them possible markers of glucocorticoid cytotoxic action.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3