Transcriptomic Screening of Alternaria oxytropis Isolated from Locoweed Plants for Genes Involved in Mycotoxin Swaisonine Production

Author:

Yuan Shuangjie12,Zhao Qingmei3,Yu Kun12,Gao Ying12,Ma Zhengbing12,Li Huanyu12,Yu Yongtao12ORCID

Affiliation:

1. School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China

2. Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China

3. College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China

Abstract

Locoweed is a collective name for a variety of plants, such as Oxytropis and Astragalus L. When these plants are infected by some fungi or endophytes, they will produce an alkaloid (swainsonine) that is harmful to livestock. Chronic toxicity characterized by neurological disorders occurs in livestock overfed on locoweed, and swainsonine (SW) is considered a major toxic component. The mechanism of the SW synthesis of endophytic fungi from locoweed remains unknown. In order to further discover the possible synthetic pathway of SW, in this study, a mycotoxin (SW) producer, Alternaria oxytropis isolate, UA003, isolated from Locoweed plants, and its mutant were subjected to transcriptomic analyses to ascertain the genes involved in the synthesis of this toxin. Mutant strain A. oxytropis E02 was obtained by ethyl methanesulfonate (EMS) mutagenesis treatment, and the strains were sequenced with different culture times for transcriptomic analysis and screening of differentially expressed genes. The results show a highly significant (p < 0.01) increase in SW yield in the A. oxytropis E02 strain obtained by EMS mutagenesis treatment compared to A. oxytropis UA003. A total of 637 differentially expressed genes were screened by transcriptome sequencing analysis, including 11 genes potentially associated with SW biosynthesis. These genes were screened using GO and KEGG data annotation and analysis. Among the differential genes, evm.TU.Contig4.409, evm.TU.Contig19.10, and evm.TU.Contig50.48 were associated with L-lysine biosynthesis, the L-pipecolic acid pathway, and the α-aminoadipic acid synthesis pathway. This study provides new insights to elucidate the mechanism of SW synthesis of endophytic fungi in locoweed and provides data support for further exploration of A. oxytropis genomics studies.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3