Abstract
Prereduction of Nchwaning manganese ore was investigated by isothermal reduction between 600 and 800 °C to optimize the conditions for industrial pretreatment of manganese ores. Experiments were conducted in CO/CO2 gas mixtures with and without hydrogen at two different oxygen partial pressures. Ore in the size fraction 9.52–15 mm was reduced in a thermogravimetric furnace, and the O/Mn ratio from the chemical analysis was used to determine the extent of prereduction. The samples were investigated by X-ray diffraction to investigate the evolution of phases under the course of reduction. The X-ray diffraction revealed that bixbyite and braunite (I and II) were reduced to manganosite with no or limited formation of hausmannite. Reduction of iron oxides subsided with wüstite, which is stabilized by manganese in the monoxide phase, and hydrogen was seen to improve the reduction of iron oxides. Modeling revealed that the reduction rate increased 2.8-fold upon increasing the CO content from 30% to 70% in a CO/CO2 gas mixture. The addition of hydrogen improved the reduction rate with factors of 1.3 and 2.6 for the low and the high oxygen partial pressures, respectively. Hence, the optimal conditions for pretreatment can be achieved by keeping the oxygen partial pressure as low as possible while adding hydrogen to the reducing gas and ensuring a high reduction temperature. Successful pretreatment limits the extent of the Boudouard reaction in the submerged arc furnace, reducing the amount of CO produced and, thus, reducing the CO available for pretreatment. Hydrogen is a useful addition to the pretreatment unit since it lowers the oxygen partial pressure and improves the kinetics of prereduction.
Funder
The Research Council of Norway
Subject
Geology,Geotechnical Engineering and Engineering Geology
Reference43 articles.
1. Production of Manganese Ferroalloys;Olsen,2007
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献