Laser Powder Bed Fusion of Inconel 718: Residual Stress Analysis Before and After Heat Treatment

Author:

Barros RafaelORCID,Silva Francisco J. G.ORCID,Gouveia Ronny M.,Saboori AbdollahORCID,Marchese GiulioORCID,Biamino SaraORCID,Salmi AlessandroORCID,Atzeni EleonoraORCID

Abstract

Residual stresses (RS) of great magnitude are usually present in parts produced by Laser Powder Bed Fusion (PBF-LB), mainly owing to the extreme temperature gradients and high cooling rates involved in the process. Those “hidden” stresses can be detrimental to a part’s mechanical properties and fatigue life; therefore, it is crucial to know their magnitude and orientation. The hole-drilling strain-gage method was used to determine the RS magnitude and direction-depth profiles. Cuboid specimens in the as-built state, and after standard solution annealing and ageing heat treatment conditions, were prepared to study the RS evolution throughout the heat treatment stages. Measurements were performed on the top and lateral surfaces. In the as-built specimens, tensile stresses of ~400 MPa on the top and above 600 MPa on the lateral surface were obtained. On the lateral surface, RS anisotropy was noticed, with the horizontally aligned stresses being three times lower than the vertically aligned. RS decreased markedly after the first heat treatment. On heat-treated specimens, magnitude oscillations were observed. By microstructure analysis, the presence of carbides was verified, which is a probable root for the oscillations. Furthermore, compressive stresses immediate to the surface were obtained in heat-treated specimens, which is not in agreement with the typical characteristics of parts fabricated by PBF-LB, i.e., tensile stresses at the surface and compressive stresses in the part’s core.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3