Dynamic Simulation Model and Experimental Validation of One Passive Fuel Cell–Battery Hybrid Powertrain for an Electric Light Scooter

Author:

Zhang Zhiming1ORCID,Rex Alexander1,Zhou Jiaming2ORCID,Zhang Xinfeng3,Huang Gangqiang1,Zhang Jinming2ORCID,Zhang Tong14

Affiliation:

1. School of Automotive Studies, Tongji University, Shanghai 201804, China

2. School of Intelligent Manufacturing, Weifang University of Science and Technology, Weifang 262700, China

3. School of Information and Electrical Engineering, Zhejiang University City College, Hangzhou 310015, China

4. Yangtze Delta Region Institute of Tsinghua University Zhejiang, Jiaxing 314006, China

Abstract

Given the escalating issue of climate change, environmental protection is of growing importance. A rising proportion of battery-powered scooters are becoming available. However, their range is limited, and they require a long charging time. The fuel cell–battery-powered electric scooter appears to be a promising alternative. Further development of the active hybrid is the passive hybrid, in which the fuel cell is directly coupled to the battery, eliminating the need for a DC/DC converter. The passive hybrid promises the possibility of a reduction in the installation volume and cost. A simulation model is created MATLAB/Simulink for the passive fuel cell–battery hybrid electric scooter. It specifically focuses on how the power split between the fuel cell and battery occurs under dynamic load requirements. The scooter is powered by two air–hydrogen Proton Exchange Membrane Fuel Cell (PEMFC) systems with a nominal power of 250 W each and a Li-ion battery (48 V, 12 Ah). The validation is performed following an ECE-R47 driving cycle. The maximum relative deviation of the fuel cell is 2.82% for the current value. The results of the simulation show a high level of agreement with the test data. This study provides a method allowing for an efficient assessment of the passive fuel cell–battery hybrid electric scooter.

Funder

Natural Science Foundation of Shanghai

Weifang University of Science and Technology High-level Talent Research Start-up Fund Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3