Developing the Actual Precipitation Probability Distribution Based on the Complete Daily Series

Author:

Zhai Wangyuyang1,Wang Zhoufeng23,Feng Youcan1ORCID,Xue Lijun4,Ma Zhenjie5,Tian Lin5,Sun Hongliang4

Affiliation:

1. College of New Energy and Environment, Jilin University, Changchun 130012, China

2. School of Water and Environment, Chang’an University, Xi’an 710064, China

3. Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Xi’an 710064, China

4. Changchun Municipal Engineering Design and Research Institute, Changchun 130012, China

5. College of Water Conservancy and Environmental Engineering, Changchun Institute of Technology, Changchun 130012, China

Abstract

The defense against urban pluvial flooding relies on the prediction of rainfall frequency, intensity, and long-term trends. The influence of the choice of the complete time series or the wet-day series on the rain analyses remains unclear, which affects the adaptive strategies for the old industrial cities such as Changchun in Northeastern China, with the outdated combined sewer systems. Based on the data from the two separate weather stations, four types of distributions were compared for analyzing the complete daily precipitation series, and their fitting accuracy was found in decreasing order of Pearson III, Pareto–Burr–Feller distribution (PBF), generalized extreme value (GEV), and Weibull. The Pearson III and the PBF probability distribution functions established based on the complete time series were found to be at least 458% and 227%, respectively, more accurate in fitting with the consecutive observations than those built from the wet-day-only series, which did not take account of the probability of the dry periods between the rain events. The rain depths of the return periods determined from the wet-day-only series might be over-predicted by at least 76% if the complete daily series were regarded as being more closely representative of the real condition. A clear threshold of 137 days was found in this study to divide the persistent or autocorrelated time series from the antipersistent or independent time series based on the climacogram analysis, which provided a practical way for independence determination. Due to the significant difference in the rain analyses established from the two time series, this work argued that the complete daily series better represented the real condition and, therefore, should be used for the frequency analysis for flood planning and infrastructure designs.

Funder

Fundamental Research Funds for the Central Universities, CHD

Scientific Research Program of The Education Department of Jilin Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3