Cooking, Digestion, and In Vitro Colonic Fermentation of Nigerian Wholegrains Affect Phenolic Acid Metabolism and Gut Microbiota Composition

Author:

Obayiuwana Oghenerukevwe Anne12,Behrends Volker1ORCID,Calle-Patino Yolanda1ORCID,Barone Monica3ORCID,Turroni Silvia4ORCID,Brigidi Patrizia3,Costabile Adele1ORCID,Corona Giulia1ORCID

Affiliation:

1. School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK

2. Department of Medical Biochemistry, University of Benin, Benin 300283, Nigeria

3. Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy

4. Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy

Abstract

Wholegrains contain both fibre and phenolic acids (PAs), and their gastrointestinal modifications are critical for their bioavailability and bioactivity. We evaluated the modifications on the PA profile and gut microbiota composition of selected Nigerian wholegrains, following cooking and gastrointestinal digestion. Red fonio, red millet, red sorghum, and white corn were cooked, digested, and fermented using an in vitro colonic model. A total of 26 PA derivatives were quantified in soluble and bound fractions using Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS) analysis. DNA samples were analysed using 16S rRNA amplicon sequencing to profile the microbiota composition. The results show that cooking and digestion significantly affected the levels of PAs in all grains (p ≤ 0.05) compared to raw grains. Colonic fermentation resulted in a peak of total soluble PAs at 4–6 h for red sorghum and white corn and at 24 h for red millet and red fonio. Enterobacteriaceae genera were the most abundant at 24 h in all grains studied. 3-hydroxybenzaldehyde correlated positively with the relative abundance of Dorea and the mucus-degrader bacteria Akkermansia (p ≤ 0.05), whereas hydroferulic acid and isoferulic acid levels correlated negatively with Oscillospira and Ruminococcus (p ≤ 0.05), respectively. Our data indicate that cooking, digestion, and colonic fermentation affect the release of bound PAs from wholegrains and, consequently, their metabolic conversion. Furthermore, PA fermentation in the gut is associated with potentially relevant changes in the microbiota. This in vitro study provides the basis for the design of an in vivo human intervention study that can confirm the trends herein observed but also assess the impact on health outcomes.

Funder

University of Roehampton

Schlumberger Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3