Lipid-Based Nanocarriers for Delivery of Neuroprotective Kynurenic Acid: Preparation, Characterization, and BBB Transport

Author:

Juhász Ádám12ORCID,Ungor Ditta2ORCID,Varga Norbert12ORCID,Katona Gábor3ORCID,Balogh György T.45,Csapó Edit12ORCID

Affiliation:

1. Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary

2. MTA-SZTE Lendület “Momentum” Noble Metal Nanostructures Research Group, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary

3. Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary

4. Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre út 9, H-1092 Budapest, Hungary

5. Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem Rakpart 3, H-1111 Budapest, Hungary

Abstract

Encapsulation possibilities of an extensively investigated neuroprotective drug (kynurenic acid, KYNA) are studied via lipid-based nanocarriers to increase the blood–brain barrier (BBB) specific permeability. The outcomes of various preparation conditions such as stirring and sonication time, concentration of the lipid carriers and the drug, and the drug-to-lipid ratio are examined. Considering the experimentally determined encapsulation efficiency, hydrodynamic diameter, and ζ-potential values, the initial lipid and drug concentration as well as the stirring and sonication time of the preparation were optimized. The average hydrodynamic diameter of the prepared asolectin-(LIP) and water-soluble lipopolymer (WSLP)-based liposomes was found to be ca. 25 and 60 nm under physiological conditions. The physicochemical characterization of the colloidal carriers proves that the preparation of the drug-loaded liposomes was a successful process, and secondary interactions were indicated between the drug molecule and the polymer residues around the WSLP membrane. Dissolution profiles of the active molecule under physiological conditions were registered, and the release of the unformulated and encapsulated drug is very similar. In addition to this outcome, the in vitro polar brain lipid extract (porcine)-based permeability test proved the achievement of two- or fourfold higher BBB specific penetration and lipid membrane retention for KYNA in the liposomal carriers relative to the unformatted drug.

Funder

National Research, Development, and Innovation Office-NKFIH

Ministry of Innovation and Technology (MIT) of Hungary from the National Research, Development and Innovation Fund

János Bolyai Research Scholarship of the Hungarian Academy of Sciences

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3