Spruce Bark Beetle Outbreak Prediction through Automatic Classification of Sentinel-2 Imagery

Author:

Bozzini Aurora1ORCID,Francini Saverio23ORCID,Chirici Gherardo24ORCID,Battisti Andrea1ORCID,Faccoli Massimo1ORCID

Affiliation:

1. Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, 35020 Legnaro, Italy

2. Department of Agriculture, Food, Environment and Forestry, Università Degli Studi Di Firenze, 50144 Florence, Italy

3. NBFC, National Biodiversity Future Center, 90133 Palermo, Italy

4. Fondazione per il Futuro Delle Città, 50133 Florence, Italy

Abstract

Extreme weather events are increasing in frequency and intensity, posing a threat to forest ecosystems and eliciting forest-pest outbreaks. In the southern Italian Alps, a dramatic windthrow called Vaia occurred in October 2018, shifting populations of the European spruce bark beetle (Ips typographus) from an endemic to an epidemic phase. Remote-sensing methods are often employed to detect areas affected by disturbances, such as forest-pest outbreaks, over large regions. In this study, a random forest model on the Sentinel-2 images acquired over the south-eastern Alps in 2021 and 2022 was used to detect the outbreak spots. The automatic classification model was tested and validated by exploiting ground data collected through a survey conducted in 2021 and 2022 in both healthy and infested spots, characterized by variable sizes and degrees of infestation. The model correctly identified the forest conditions (healthy or infested) with an overall accuracy of 72% for 2022 and 58% for 2021. These results highlight the possibility of locating I. typographus outbreaks, even in small spots (between 5 and 50 trees) or spots intermixed with healthy trees. The prompt detection of areas with a higher frequency of outbreaks could be a useful tool to integrate field surveys and select forest areas in which to concentrate management operations.

Funder

Regione del Veneto Servizi Fitosanitari

DAFNAE DOR UNIPD

European Union Next-GenerationEU

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3