A Robust Interacting Multi-Model Multi-Bernoulli Mixture Filter for Maneuvering Multitarget Tracking under Glint Noise

Author:

Yu Benru1ORCID,Gu Hong1,Su Weimin1

Affiliation:

1. School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Abstract

In practical radar systems, changes in the target aspect toward the radar will result in glint noise disturbances in the measurement data. The glint noise has heavy-tailed characteristics and cannot be perfectly modeled by the Gaussian distribution widely used in conventional tracking algorithms. In this article, we investigate the challenging problem of tracking a time-varying number of maneuvering targets in the context of glint noise with unknown statistics. By assuming a set of models for the possible motion modes of each single-target hypothesis and leveraging the multivariate Laplace distribution to model measurement noise, we propose a robust interacting multi-model multi-Bernoulli mixture filter based on the variational Bayesian method. Within this filter, the unknown noise statistics are adaptively learned while filtering and the predictive likelihood is approximately calculated by means of the variational lower bound. The effectiveness and superiority of our proposed filter is verified via computer simulations.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference52 articles.

1. Vo, B.N., Mallick, M., Bar-Shalom, Y., Coraluppi, S., Osborne, R., Mahler, R., and Vo, B.T. (2015). Wiley Encyclopedia of Electrical and Electronics Engineering, Wiley.

2. Mahler, R. (2007). Statistical Multisource-Multitarget Information Fusion, Artech House.

3. Multitarget Bayes filtering via first-order multitarget moments;Mahler;IEEE Trans. Aerosp. Electron. Syst.,2003

4. PHD filters of higher order in target number;Mahler;IEEE Trans. Aerosp. Electron. Syst.,2007

5. The cardinality balanced multi-target multi-Bernoulli filter and its implementations;Vo;IEEE Trans. Signal Process.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3