Enhancing Obscured Regions in Thermal Imaging: A Novel GAN-Based Approach for Efficient Occlusion Inpainting

Author:

Abuhussein Mohammed1ORCID,Almadani Iyad1ORCID,Robinson Aaron L.1,Younis Mohammed1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Herff College of Engineering, University of Memphis, 3817 Central Ave, Memphis, TN 38111, USA

Abstract

This research paper presents a novel approach for occlusion inpainting in thermal images to efficiently segment and enhance obscured regions within these images. The increasing reliance on thermal imaging in fields like surveillance, security, and defense necessitates the accurate detection of obscurants such as smoke and fog. Traditional methods often struggle with these complexities, leading to the need for more advanced solutions. Our proposed methodology uses a Generative Adversarial Network (GAN) to fill occluded areas in thermal images. This process begins with an obscured region segmentation, followed by a GAN-based pixel replacement in these areas. The methodology encompasses building, training, evaluating, and optimizing the model to ensure swift real-time performance. One of the key challenges in thermal imaging is identifying effective strategies to mitigate critical information loss due to atmospheric interference. Our approach addresses this by employing sophisticated deep-learning techniques. These techniques segment, classify and inpaint these obscured regions in a patch-wise manner, allowing for more precise and accurate image restoration. We propose utilizing architectures similar to Pix2Pix and UNet networks for generative and segmentation tasks. These networks are known for their effectiveness in image-to-image translation and segmentation tasks. Our method enhances the segmentation and inpainting process by leveraging their architectural similarities. To validate our approach, we provide a quantitative analysis and performance comparison. We include a quantitative comparison between (Pix2Pix and UNet) and our combined architecture. The comparison focuses on how well each model performs in terms of accuracy and speed, highlighting the advantages of our integrated approach. This research contributes to advancing thermal imaging techniques, offering a more robust solution for dealing with obscured regions. The integration of advanced deep learning models holds the potential to significantly improve image analysis in critical applications like surveillance and security.

Publisher

MDPI AG

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3