An Unsupervised Fault Warning Method Based on Hybrid Information Gain and a Convolutional Autoencoder for Steam Turbines

Author:

Zhai Jinxing1,Ye Jing2,Cao Yue3ORCID

Affiliation:

1. Tongliao Huolinhe Pithead Power Generation Co., Ltd., State Power Investment Inner Mongolia Energy Co., Ltd., HuoLinguole 029200, China

2. Shanghai Power Equipment Research Institue Co., Ltd., Shanghai 200240, China

3. Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China

Abstract

Renewable energy accommodation in power grids leads to frequent load changes in power plants. Sensitive turbine fault monitoring technology is critical to ensure the stable operation of the power system. Existing techniques do not use information sufficiently and are not sensitive to early fault signs. To solve this problem, an unsupervised fault warning method based on hybrid information gain and a convolutional autoencoder (CAE) for turbine intermediate flux is proposed. A high-precision intermediate-stage flux prediction model is established using the CAE. The hybrid information gain calculation method is proposed to filter the features of multi-dimensional sensors. The Hampel filter for time series outlier detection is introduced to deal with factors such as sensor faults and noise. The proposed method achieves the highest fault diagnosis accuracy through experiments on real data compared to traditional methods. Real data experiments show that the proposed method relatively improves the diagnostic accuracy by an average of 2.12% compared to the gate recurrent unit networks, long short-term memory networks, and other traditional models. Meanwhile, the proposed hybrid information gain can effectively improve the detection accuracy of the traditional models, with a maximum of 1.89% relative accuracy improvement. The proposed method is noteworthy for its superiority and applicability.

Funder

State Power Investment Corporation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3