Paleoproterozoic Layered Intrusions of the Monchegorsk Ore District: Geochemistry and U–Pb, Sm–Nd, Re–Os Isotope Analysis

Author:

Smol’kin Valery F.,Mokrushin Artem V.ORCID

Abstract

The paper concerns the geochemical analysis of rocks from the ore-bearing layered intrusions that belong to two age groups of the Monchepluton and the Imandra–Umbarechka Complex (2.50 and 2.44 Ga) and the largest gabbro-anorthosite of the Main Ridge Complex (2.51–2.45 Ga). The intrusion of these complexes happened at different depths when the endogenous and geodynamic settings changed at the beginning of the Paleoproterozoic Era. Five megacycles are distinguished in a generalized cross-section of the two-chamber Monchepluton. The megacycles differ in rock composition, rock geochemical features, and mineralization types, i.e., the chromite, sulfide Cu–Ni–PGE and low-sulfide PGE types. The abrupt changes in isotope indicators (εNd, 87Sr/86Sr) mark their boundaries. At a depth of 2037–2383 m, the M-1 borehole intersects a standalone intrusive body that is essentially a magma feeder channel. The intrusive body’s geochemical characteristics and U–Pb isotope age correlate to the Monchepluton rocks. The gabbro-anorthosite massifs united in the Main Ridge Complex were intruded in the following order: the Monchetundra, Chunatundra, Volchetundra, and Losevo–Medvezhye tundras. The largest Monchetundra massif was formed as a result of multiple intrusions of mafic magmatic melt from the deep reservoirs. The melts intruded in two stages, i.e., 2.51–2.49 Ga and 2.48–2.47 Ga, and their composition changed gradually. The gabbro-pegmatites and coeval harrisite dykes are more recent ones (2.46–2.45 Ga). The summarized results of the U–Pb, Sm–Nd, and Re–Os systems research allowed us to establish genetic relations between the studied geological objects. We proposed a model where there was an uplift of a mantle plume to the lower crust area at the age of 2.5 Ga, the deep mantle reservoirs were formed, and a large-scale interaction happened between the parental magma and granulite–eclogite complex rocks. Local contamination and assimilation processes took place during the uplifting of magmas in areas where the magmatic feeding system contacted the host amphibolite–gneiss Archean complexes.

Funder

Geological Institute of the Kola Science Center of the Russian Academy of Sciences

Russian Foundation for Basic Research

Russian Science Foundation

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference55 articles.

1. Sharkov, E.V. (In Russian). Petrology of Layered Intrusions: Leningrad, 1980.

2. Early Proterozoic layered intrusion in the northeastern part of the Fennoscandian Shield;Alapieti;Miner. Petrol.,1990

3. Smolkin, V.F., Kremenetsky, A.A., Vetrin, V.R., and Tessalina, S.G. A model of the ore-magmatic system formation of the Paleoproterozoic layered intrusions of the Baltic Shield. Science and Education: Towards the 250th Anniversary of Geological Museum RAS, 2009.

4. Mantle source of the 2.44-2.50-Ga mantle plume-related magmatism in the Fennoscandian Shield: Evidence from Os, Nd, and Sr isotope compositions of the Monchepluton and Kemi intrusions;Yang;Miner. Depos.,2016

5. Mitrofanov, F.P., and Smolkin, V.F. (In Russian). Layered Intrusions of the Monchegorsk ore Region: Petrology, Mineralization, Isotope Features and Deep Structure, 2004.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3