Monitoring Water Transparency in Shallow and Eutrophic Lake Waters Based on GOCI Observations

Author:

Bai Shuying,Gao Jixi,Sun Deyong,Tian Meirong

Abstract

Water transparency represented by the Secchi disk depth (Zsd) plays an important role in understanding water ecology environment variations, especially for optically complex and shallow lake waters. In this study, using in situ measured remote sensing reflectance (Rrs), diffuse attenuation coefficient (Kd), and Zsd data collected in Lake Taihu (China), a regional algorithm for estimating Kd from Rrs was designed, and the semi-analytical model proposed by Lee et al. (2015) (hereafter called Lee_2015 model) was refined using a linear scaling correction for remote sensing of Zsd. The results showed that a good agreement between the derived Kd and in situ measured data (mean absolute percentage error (MAPE) = 26% for Kd(490); MAPE < 5% for Kd at 443, 555, and 660 nm). The in situ Rrs-derived Zsd results using the refined Lee_2015 model compared well with the in situ measured Zsd (R2 = 0.72 and MAPE = 36%), which was an obvious improvement over the Lee_2015 model in our study region. Subsequently, the refined Lee_2015 model was applied to the geostationary ocean color imager (GOCI) observations between 2012 and 2018 to yield the spatial and temporal variations of water transparency in the Lake Taihu waters. The long-term mean distribution of Zsd revealed that water transparency values in the northeastern Lake Taihu were generally higher than those in the southwest part. Monthly climatological Zsd patterns suggested that the Zsd distributions had large temporal variability, and distinct monthly patterns of Zsd existed in different subregions of Lake Taihu. The significant interannual variations of Zsd in Lake Taihu are probably affected by a combination of the water column stability mainly caused by wind, water temperature, human activity, and riverine discharge. The present study can provide a new approach for quantifying water visibility and serve for water-color remote sensing of optically complex and highly turbid waters.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3