A Long-Term Passive Microwave Snowoff Record for the Alaska Region 1988–2016

Author:

Pan Caleb G.ORCID,Kirchner Peter B.ORCID,Kimball John S.,Du Jinyang

Abstract

Snowoff (SO) date—defined as the last day of observed seasonal snow cover—is an important governor of ecologic and hydrologic processes across Alaska and Arctic-Boreal landscapes; however, our understanding and capacity for the monitoring of spatial and temporal variability in the SO date is still lacking. In this study, we present a 6.25 km spatially gridded passive microwave (PMW) SO data record, complimenting current Alaskan SO records from Moderate Resolution Imaging Spectrometer (MODIS) and Landsat, but extending the SO record an additional 13 years. The PMW SO record was validated against in situ snow depth observations and showed favorable accuracy (0.66–0.92 mean correlations; 2–10 day mean absolute errors) for the major climate regions of Alaska. The PMW SO results were also within 10 days of finer spatial scale SO observational records, including Interactive Multisensor Snow and Ice Mapping System (IMS), MODIS, and Landsat, for a majority (75%) of Alaska. However, the PMW record showed a general SO delay at higher elevations and across the Alaska North Slope, and earlier SO in the Alaska interior and southwest regions relative to the other SO records. Overall, we assign an uncertainty +/−11 days to the PMW SO. The PMW SO record benefits from the near-daily temporal fidelity of underlying brightness temperature (Tb) observations and reveals a mean regional trend in earlier SO timing (−0.39 days yr−1), while significant (p < 0.1) SO trend areas encompassed 11% of the Alaska domain and ranged from −0.11 days yr−1 to −1.31 days yr−1 over the 29-year satellite record. The observed SO dates also showed anomalous early SO dates during markedly warm years. Our results clarify the pattern and rate of SO changes across Alaska, which are interactive with global warming and contributing to widespread permafrost degradation, changes in regional hydrology, ecosystems, and associated services. Our results also provide a robust means for SO monitoring from satellite PMW observations with similar precision as more traditional and finer scale observations.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3