Machine Failure Prediction Using Survival Analysis

Author:

Papathanasiou Dimitris1ORCID,Demertzis Konstantinos2ORCID,Tziritas Nikos3

Affiliation:

1. Department of Computer Science and Biomedical Informatics, University of Thessaly, Papasiopoulou 2–4, 35131 Lamia, Greece

2. School of Science and Technology, Informatics Studies, Hellenic Open University, Aristotle 18, 26335 Patra, Greece

3. Department of Computer Science and Telecommunications, University of Thessaly, 35100 Lamia, Greece

Abstract

With the rapid growth of cloud computing and the creation of large-scale systems such as IoT environments, the failure of machines/devices and, by extension, the systems that rely on them is a major risk to their performance, usability, and the security systems that support them. The need to predict such anomalies in combination with the creation of fault-tolerant systems to manage them is a key factor for the development of safer and more stable systems. In this work, a model consisting of survival analysis, feature analysis/selection, and machine learning was created, in order to predict machine failure. The approach is based on the random survival forest model and an architecture that aims to filter the features that are of major importance to the cause of machine failure. The objectives of this paper are to (1) Create an efficient feature filtering mechanism, by combining different methods of feature importance ranking, that can remove the “noise” from the data and leave only the relevant information. The filtering mechanism uses the RadViz, COX, Rank2D, random survival forest feature ranking, and recursive feature elimination, with each of the methods used to achieve a different understanding of the data. (2) Predict the machine failure with a high degree of accuracy using the RSF model, which is trained with optimal features. The proposed method yields superior performance compared to other similar models, with an impressive C-index accuracy rate of approximately 97%. The consistency of the model’s predictions makes it viable in large-scale systems, where it can be used to improve the performance and security of these systems while also lowering their overall cost and longevity.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Repurchase Prediction Using Survival Ensembles in CRM Systems for Home Appliance Business;IEEE Access;2024

2. Predictive Maintenance Application on Machine Overstrain Failure with Node-Red and Isolation Forest Anomaly Detection;2023 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT);2023-11-23

3. Enhancing Robotic Performance: Analyzing Force and Torque Measurements for Predicting Execution Failures;2023 Innovations in Intelligent Systems and Applications Conference (ASYU);2023-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3