Large-Scale Biochar Incorporation Does Not Necessarily Promote the Carbon Sink of Estuarine Wetland Soil

Author:

Xie Mengdi1,Lu Xiaojuan23,Wang Han2,Fu Xiaohua23,Wang Lei23

Affiliation:

1. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China

2. Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China

3. Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China

Abstract

Biochar incorporation is a widespread approach for soil improvement and soil carbon sequestration. However, there have only been a few studies on the effects of large-scale biochar incorporation on the estuarine wetland soil. To assess the different rates and incorporation times of biochar effects on the soil carbon cycle, the effects and mechanisms of biochar actions on soil respiration and plant growth were clarified via an outdoor control experiment that analyzed the soil microbial activity and community structure of estuarine wetland soil. The results unconventionally showed that a higher rate (238.82 g·kg−1) of biochar incorporation achieved stimulated soil respiration compared to lower incorporation rates (9.14 g·kg−1, 23.89 g·kg−1, 47.79 g·kg−1 and 143.36 g·kg−1) and was 38.9%, −21.8%, and 6.23% higher than the soil respiration of the control on three incorporation months. The soil microbial biomass (45.54% in the higher rate of biochar incorporation soil than the control) and the activities of β-glucosidase enzymes (25.4% higher in the higher rate of biochar incorporation soil than the control) explained these differences in soil respiration. This phenomenon was confirmed to be a result of provoking the bacteria of a heterotroph or from a lower humification ability, which enhanced organic carbon degradation in a large amount of biochar incorporation soil. In conclusion, even large-scale biochar incorporation may introduce more stable carbon to the soil, and the carbon sink of estuarine wetland soil may weaken due to the greater carbon output generated in its specific soil microbial species.

Funder

Youth Fund of the National Natural Science Foundation of China

Natural Science Foundation of China

China National Key Research and Development Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3