Dynamic Control of Flood Limited Water Levels for Parallel Reservoirs by Considering Forecast Period Uncertainty

Author:

Li Yanbin1,Li Yubo1,Feng Kai1ORCID,Tian Kaiyuan1,Huang Tongxuan1

Affiliation:

1. College of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450045, China

Abstract

The objective of this study is to achieve the dynamic optimization of the flood limited water level (FLWL) in parallel reservoirs, using Luhun Reservoir and Guxian Reservoir as case studies. The innovation lies in establishing a dynamic control optimization model for the FLWL of parallel reservoirs, considering the uncertainty in the forecasting period of the flood forecast due to the varying locations of the rainstorm center from upstream to downstream. To commence, the Fisher optimal segmentation method is employed for flood season staging to determine the staged FLWL of each reservoir. Subsequently, considering the uncertainty in the foresight period, the upper range of the dynamic FLWL is determined through the improved pre-discharge capacity constraint method and Monte Carlo simulation. Finally, a multi-objective optimization model is established to determine the optimal dynamic FLWL control operation scheme for parallel reservoirs, utilizing the Non-Dominated Sorting Genetic Algorithm II (NSGA-II). This model takes into account both downstream flood control requirements and the water supply benefits of the parallel reservoirs. Through the optimization of the scheme, the water supply of the parallel reservoirs can be augmented by 15,347.6 m3 during the flood season. This optimization effectively achieves a harmonious balance between flood control and water supply, holding significant implications for mitigating drought risks amid changing conditions.

Funder

National Natural Science Fund of China

Science and Technology Projects in Henan Province

State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin

Yinshanbeilu Grassland Eco-hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3