The Use of Non-Plastic Materials for Oyster Reef and Shoreline Restoration: Understanding What Is Needed and Where the Field Is Headed

Author:

Walters Linda J.ORCID,Roddenberry AnnieORCID,Crandall Chelsey,Wayles Jessy,Donnelly Melinda,Barry Savanna C.ORCID,Clark Mark W.,Escandell Olivia,Hansen Jennifer C.,Laakkonen Katie,Sacks Paul E.

Abstract

Oyster and shoreline restoration is occurring around the globe to recover lost ecosystem services. In the state of Florida, USA, dozens of estuarine habitat restoration projects are underway. These projects have traditionally relied on both natural and man-made materials, including plastics. As the impacts of plastics on marine ecosystems are better understood, practitioners are increasingly focused on plastic-free restoration. To better understand this transition, we surveyed Florida restoration practitioners in April 2021 to capture current non-plastic restoration project trends and their status. Our descriptive survey goals were to understand: (1) what non-plastic materials have been tested, (2) trade-offs between plastic and non-plastic materials (e.g., cost, sourcing, volunteer engagement), and (3) the performance of non-plastic materials. Responses indicated that a variety of non-plastic materials are currently being used, including rock, cement-infused jute structures, cement Reef Balls™ (Reef Ball Foundation, USA), BESE-elements®, and metal gabions. Overall, these materials are more expensive and equally or more difficult to install than previously popular plastic-based materials. No “best” non-plastic material emerged from our survey in part because many novel materials have been deployed for under three years. Long-term performance under a variety of abiotic and biotic conditions is thus a future research priority.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3