A Robust Design-Based Expert System for Feature Selection and COVID-19 Pandemic Prediction in Japan

Author:

Ho Chien-Ta,Wang Cheng-Yi

Abstract

Expert systems are frequently used to make predictions in various areas. However, the practical robustness of expert systems is not as good as expected, mainly due to the fact that finding an ideal system configuration from a specific dataset is a challenging task. Therefore, how to optimize an expert system has become an important issue of research. In this paper, a new method called the robust design-based expert system is proposed to bridge this gap. The technical process of this system consists of data initialization, configuration generation, a genetic algorithm (GA) framework for feature selection, and a robust mechanism that helps the system find a configuration with the highest robustness. The system will finally obtain a set of features, which can be used to predict a pandemic based on given data. The robust mechanism can increase the efficiency of the system. The configuration for training is optimized by means of a genetic algorithm (GA) and the Taguchi method. The effectiveness of the proposed system in predicting epidemic trends is examined using a real COVID-19 dataset from Japan. For this dataset, the average prediction accuracy was 60%. Additionally, 10 representative features were also selected, resulting in a selection rate of 67% with a reduction rate of 33%. The critical features for predicting the epidemic trend of COVID-19 were also obtained, including new confirmed cases, ICU patients, people vaccinated, population, population density, hospital beds per thousand, middle age, aged 70 or older, and GDP per capital. The main contribution of this paper is two-fold: Firstly, this paper has bridged the gap between the pandemic research and expert systems with robust predictive performance. Secondly, this paper proposes a feature selection method for extracting representative variables and predicting the epidemic trend of a pandemic disease. The prediction results indicate that the system is valuable to healthcare authorities and can help governments get hold of the epidemic trend and strategize their use of healthcare resources.

Publisher

MDPI AG

Subject

Health Information Management,Health Informatics,Health Policy,Leadership and Management

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey on Optimization Methods in Business Information Systems;2023 24th International Conference on Control Systems and Computer Science (CSCS);2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3