CADFU for Dermatologists: A Novel Chronic Wounds & Ulcers Diagnosis System with DHuNeT (Dual-Phase Hyperactive UNet) and YOLOv8 Algorithm

Author:

Shah Syed Muhammad Ahmed Hassan1ORCID,Rizwan Atif2ORCID,Atteia Ghada3ORCID,Alabdulhafith Maali3

Affiliation:

1. Department of Computer Science, COMSATS University Islamabad, Attock Campus, Attock 43600, Pakistan

2. Department of Computer Engineering, Jeju National University, Jejusi 63243, Republic of Korea

3. Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

Abstract

In recent times, there has been considerable focus on harnessing artificial intelligence (AI) for medical image analysis and healthcare purposes. In this study, we introduce CADFU (Computer-Aided Diagnosis System for Foot Ulcers), a pioneering diabetic foot ulcer diagnosis system. The primary objective of CADFU is to detect and segment ulcers and similar chronic wounds in medical images. To achieve this, we employ two distinct algorithms. Firstly, DHuNeT, an innovative Dual-Phase Hyperactive UNet, is utilized for the segmentation task. Second, we used YOLOv8 for the task of detecting wounds. The DHuNeT autoencoder, employed for the wound segmentation task, is the paper’s primary and most significant contribution. DHuNeT is the combination of sequentially stacking two UNet autoencoders. The hyperactive information transmission from the first UNet to the second UNet is the key idea of DHuNeT. The first UNet feeds the second UNet the features it has learned, and the two UNets combine their learned features to create new, more accurate, and effective features. We achieve good performance measures, especially in terms of the Dice co-efficient and precision, with segmentation scores of 85% and 92.6%, respectively. We obtain a mean average precision (mAP) of 86% in the detection task. Future hospitals could quickly monitor patients’ health using the proposed CADFU system, which would be beneficial for both patients and doctors.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Health Information Management,Health Informatics,Health Policy,Leadership and Management

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3