Vertebral Column Pathology Diagnosis Using Ensemble Strategies Based on Supervised Machine Learning Techniques

Author:

Rojas-López Alam Gabriel1ORCID,Rodríguez-Molina Alejandro2ORCID,Uriarte-Arcia Abril Valeria1ORCID,Villarreal-Cervantes Miguel Gabriel1ORCID

Affiliation:

1. Optimal Mechatronic Design Laboratory, Postgraduate Department, Instituto Politécnico Nacional—Centro de Innovación y Desarrollo Tecnológico en Cómputo, Mexico City 07700, Mexico

2. Colegio de Ciencia y Tecnología, Universidad Autónoma de la Ciudad de México, Mexico City 06720, Mexico

Abstract

One expanding area of bioinformatics is medical diagnosis through the categorization of biomedical characteristics. Automatic medical strategies to boost the diagnostic through machine learning (ML) methods are challenging. They require a formal examination of their performance to identify the best conditions that enhance the ML method. This work proposes variants of the Voting and Stacking (VC and SC) ensemble strategies based on diverse auto-tuning supervised machine learning techniques to increase the efficacy of traditional baseline classifiers for the automatic diagnosis of vertebral column orthopedic illnesses. The ensemble strategies are created by first combining a complete set of auto-tuned baseline classifiers based on different processes, such as geometric, probabilistic, logic, and optimization. Next, the three most promising classifiers are selected among k-Nearest Neighbors (kNN), Naïve Bayes (NB), Logistic Regression (LR), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Support Vector Machine (SVM), Artificial Neural Networks (ANN), and Decision Tree (DT). The grid-search K-Fold cross-validation strategy is applied to auto-tune the baseline classifier hyperparameters. The performances of the proposed ensemble strategies are independently compared with the auto-tuned baseline classifiers. A concise analysis evaluates accuracy, precision, recall, F1-score, and ROC-ACU metrics. The analysis also examines the misclassified disease elements to find the most and least reliable classifiers for this specific medical problem. The results show that the VC ensemble strategy provides an improvement comparable to that of the best baseline classifier (the kNN). Meanwhile, when all baseline classifiers are included in the SC ensemble, this strategy surpasses 95% in all the evaluated metrics, standing out as the most suitable option for classifying vertebral column diseases.

Funder

Secretaría de Investigación y Posgrado (SIP) of the Instituto Politécnico Nacional

Publisher

MDPI AG

Reference84 articles.

1. Is this time different? A note on automation and labour in the fourth industrial revolution;Marengo;J. Ind. Bus. Econ.,2019

2. Automation Type and Reliability Impact on Visual Automation Monitoring and Human Performance;Avril;Int. J. Hum.–Comput. Interact.,2022

3. A Music-Based Digital Therapeutic: Proof-of-Concept Automation of a Progressive and Individualized Rhythm-Based Walking Training Program after Stroke;Hutchinson;Neurorehabilit. Neural Repair,2020

4. Automation and computer-assisted planning for chemical synthesis;Shen;Nat. Rev. Methods Prim.,2021

5. Role of Digital Microfluidics in Enabling Access to Laboratory Automation and Making Biology Programmable;Kothamachu;SLAS Technol. Transl. Life Sci. Innov.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3