Upper-Limb Robot-Assisted Therapy Based on Visual Error Augmentation in Virtual Reality for Motor Recovery and Kinematics after Chronic Hemiparetic Stroke: A Feasibility Study

Author:

Cho Ki-HunORCID,Hong Mi-Ran,Song Won-KyungORCID

Abstract

The purpose of this study was to investigate the effect of upper-limb robot-assisted therapy based on visual error augmentation in virtual reality (UL-RAT-VEAVR) for motor recovery and kinematics after chronic hemiparetic stroke. This study applied a single-group pre- and post-intervention study design. A total of 27 stroke survivors (20 males and 7 females; mean age 54.51 years, mean onset duration 12.7 months) volunteered to participate in this study. UL-RAT-VEAVR was performed three times a week for four weeks, amounting to a total of twelve sessions, in which an end-effector-based robotic arm was used with a visual display environment in virtual reality. Each subject performed a total of 480 point-to-point movements toward 3 direction targets (medial, ipsilateral, and contralateral side) in the visual display environment system while holding the handle of the end-effector-based robotic arm. The visual error (distance to the targets on the monitor) in virtual reality was increased by 5% every week based on the subject’s maximum point-to-point reaching trajectory. Upper-limb motor recovery was measured in all subjects using the Fugl–Meyer Assessment (FMA) upper-limb subscale, the Box and Block Test (BBT), and the Action Research Arm Test (ARAT), before and after training. In addition, a kinematic assessment was also performed before and after training and consisted of time, speed, distance, and curvilinear ratio for point-to-point movement. There were significant improvements in both upper-limb motor function and kinematics after 4 weeks of UL-RAT-VEAVR (p < 0.05). Our results showed that the UL-RAT-VEAVR may have the potential to be used as one of the upper-limb rehabilitation strategies in chronic stroke survivors. Future studies should investigate the clinical effects of the error-augmentation paradigm using an RCT design.

Publisher

MDPI AG

Subject

Health Information Management,Health Informatics,Health Policy,Leadership and Management

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3