Abstract
Carbon dots (CDs) are a novel type of carbon-based nanomaterial that has gained considerable attention for their unique optical properties, including tunable fluorescence, stability against photobleaching and photoblinking, and strong fluorescence, which is attributed to a large number of organic functional groups (amino groups, hydroxyl, ketonic, ester, and carboxyl groups, etc.). In addition, they also demonstrate high stability and electron mobility. This article reviews the topic of doped CDs with organic and inorganic atoms and molecules. Such doping leads to their functionalization to obtain desired physical and chemical properties for biomedical applications. We have mainly highlighted modification techniques, including doping, polymer capping, surface functionalization, nanocomposite and core-shell structures, which are aimed at their applications to the biomedical field, such as bioimaging, bio-sensor applications, neuron tissue engineering, drug delivery and cancer therapy. Finally, we discuss the key challenges to be addressed, the future directions of research, and the possibilities of a complete hybrid format of CD-based materials.
Subject
General Materials Science,General Chemical Engineering
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献