Controllable Introduction of Surface Defects on CH3NH3PbI3 Perovskite

Author:

Wan Sushu,Zhu Yajie,Hong Daocheng,Tian Yuxi

Abstract

One of the unique characteristics of semiconductors is the strong dependence of their properties on crystal defects and doping. However, due to the species diversity and low density, it is very difficult to control the type and concentration of the defects. In perovskite materials, crystal defects are randomly formed during the fast crystallization process, causing large heterogeneity of the samples. Here, in this work, we report a controllable method to introduce surface defects on CH3NH3PbI3 perovskite materials via the interaction with 1,4-benzoquinone (BQ) molecules on the gas and solid interface. After the adsorption of BQ molecules on the perovskite surface, surface defects can be generated by photoinduced chemical reactions. The concentration of the defects can thus be controlled by precisely regulating the laser irradiation time. The concentration of the defects can be characterized by a gradually decreased PL intensity and lifetime and was found to influence the atmospheric response and the subsequent acetone-induced degradation of the materials. These results demonstrate that crystal defects in perovskite materials can be controllably introduced, which provides a possible way to fully understand the correlation between the nature and chemical structure of these defects.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Swedish Foundation for International Cooperation in Research and Higher Education

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3