Abstract
Time and temperature, besides pressure in a lesser extent, represent the most significant variables influencing the rheological behavior of viscoelastic materials. These magnitudes are each other related through the well-known Time–Temperature Superposition (TTS) principle, which allows the master curve referred to relaxation (or creep) behavior to be derived as a material characteristic. In this work, a novel conversion law to interrelate relaxation curves at different temperatures is proposed by assuming they to be represented by statistical cumulative distribution functions of the normal or Gumbel family. The first alternative responds to physical considerations while the latter implies the fulfillment of extreme value conditions. Both distributions are used to illustrate the suitability of the model when applied to reliable derivation of the master curve of Polyvinil–Butyral (PVB) from data of experimental programs. The new approach allows not only the TTS shift factors to be estimated by a unique step, but the whole family of viscoelastic master curves to be determined for the material at any temperature. This represents a significant advance in the characterization of viscoelastic materials and, consequently, in the application of the TTS principle to practical design of viscoelastic components.
Subject
General Materials Science
Reference25 articles.
1. Creep and Relaxation of Nonlinear Viscoelastic Materials. With and Introduction to Linear Viscoelasticity;Findley,1976
2. Viscoelastic Properties of Polymers;Ferry,1980
3. The Phenomenological Theory of Linear Viscoelastic Behavior. An Introduction;Tschoegl,1989
4. Viscoelastic Materials;Lakes,2009
5. The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献