Carbonate-Catalyzed Room-Temperature Selective Reduction of Biomass-Derived 5-Hydroxymethylfurfural into 2,5-Bis(hydroxymethyl)furan

Author:

Long Jingxuan,Zhao Wenfeng,Xu Yufei,Li Hu,Yang SongORCID

Abstract

Catalytic reduction of 5-hydroxymethylfurfural (HMF), deemed as one of the key bio-based platform compounds, is a very promising pathway for the upgrading of biomass to biofuels and value-added chemicals. Conventional hydrogenation of HMF is mainly conducted over precious metal catalysts with high-pressure hydrogen. Here, a highly active, sustainable, and facile catalytic system composed of K2CO3, Ph2SiH2, and bio-based solvent 2-methyltetrahydrofuran (MTHF) was developed to be efficient for the reduction of HMF. At a low temperature of 25 °C, HMF could be completely converted to 2,5-bis(hydroxymethyl)furan (BHMF) in a good yield of 94% after 2 h. Moreover, a plausible reaction mechanism was speculated, where siloxane in situ formed via hydrosilylation was found to be the key species responsible for the high reactivity.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3