Stochastic Model-Predictive Control with Uncertainty Estimation for Autonomous Driving at Uncontrolled Intersections

Author:

Jeong YonghwanORCID

Abstract

This paper presents an uncontrolled intersection-passing algorithm with an integrated approach of stochastic model-predictive control and prediction uncertainty estimation for autonomous vehicles. The proposed algorithm is designed to utilize information from sensors mounted on the autonomous vehicle and high-definition intersection maps. The proposed algorithm is composed of two modules, namely target state prediction and a motion planner. The target state prediction module has predicted the future behavior of intersection-approaching vehicles based on human driving data. The recursive covariance estimator has been utilized to estimate the prediction uncertainty for each approaching vehicle. The desired driving mode has been determined based on the uncontrolled intersection theory. The estimated prediction uncertainty has been used to define the probability distribution of the stochastic model-predictive controller to cope with time-varying uncertainty characteristics of the perception algorithm. The constrained stochastic model-predictive controller based on safety indexes has determined the desired longitudinal acceleration. The proposed robust intersection-passing algorithm has been evaluated via computer simulation based on Monte Carlo simulation with a sensor model. The simulation results showed that the proposed algorithm guarantees the minimum safety constraints and improves the ride comfort at uncontrolled intersections by estimating the uncertainty of sensors and prediction.

Funder

Seoul National University of Science and Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference33 articles.

1. Cooperative Intersection Collision Avoidance System Limited to Stop Sign and Traffic Signal Violations;Maile,2008

2. California Intersection Decision Support: A Driver-Centered Approach to Left-Turn Collision Avoidance System Design;Bougler,2008

3. Negative Binomial Analysis of Intersection-Accident Frequencies

4. Driver behaviour and accident records at unsignalized urban intersections

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3