Hardware-in-the-Loop Test of a Prosthetic Foot

Author:

Insam ChristinaORCID,Ballat Lisa-Marie,Lorenz Felix,Rixen Daniel JeanORCID

Abstract

For a targeted development process of foot prostheses, a profound understanding of the dynamic interaction between humans and prostheses is necessary. In engineering, an often employed method to investigate the dynamics of mechanical systems is Hardware-in-the-Loop (HiL). This study conducted a fundamental investigation of whether HiL could be an applicable method to study the dynamics of an amputee wearing a prosthesis. For this purpose, a suitable HiL setup is presented and the first-ever HiL test of a prosthetic foot performed. In this setup, the prosthetic foot was tested on the test bench and coupled in real-time to a cosimulation of the amputee. The amputee was modeled based on the Virtual Pivot Point (VPP) model, and one stride was performed. The Center of Mass (CoM) trajectory, the Ground Reaction Forces (GRFs), and the hip torque were qualitatively analyzed. The results revealed that the basic gait characteristics of the VPP model can be replicated in the HiL test. Still, there were several limitations in the presented HiL setup, such as the limited actuator performance. The results implied that HiL may be a suitable method for testing foot prostheses. Future work will therefore investigate whether changes in the gait pattern can be observed by using different foot prostheses in the HiL test.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference29 articles.

1. Kinesiology-Based Robot Foot Design for Human-Like Walking

2. 20—Gait Deviations after Limb Loss;Murphy,2013

3. Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use

4. Prosthetics–Structural Testing of Lower-Limb Prostheses–Requirements and Test Methods,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A First Experience with Multidimensional Contact Real-Time Hybrid Substructuring: Toward Testing of Foot Prostheses;Conference Proceedings of the Society for Experimental Mechanics Series;2023-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3