A Low-Complexity Volterra Filtered-Error LMS Algorithm with a Kronecker Product Decomposition

Author:

Zhang Jinhui,Zheng Chengshi,Zhang Fangjie,Li Xiaodong

Abstract

Nonlinear active control is very important in many practical applications. Many well-known nonlinear active noise control algorithms may suffer from high computational complexity and low convergence speed, especially in the nonlinear secondary path case. Thus, it is still an actively researched topic for reducing complexity and improving the convergence rate. This paper presents a low-complexity Volterra filtered-error least mean square algorithm when taking a decomposable Volterra model into account for active control of nonlinear noise processes, which is referred as DVMFELMS. The computational complexity analysis shows that the proposed DVMFELMS algorithm can significantly reduce the nonlinear active noise control system’s complexity. The simulation results further show that the proposed algorithm can achieve promising performance compared with the Volterra-based FELMS algorithm and other state-of-the-art nonlinear filters, while the decomposable error of the Volterra kernel may be introduced inevitably. Moreover, the proposed DVMFELMS algorithm shows a better convergence rate in the broadband primary noise case due to fewer parameters used in each sub-filter.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference40 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3