Abstract
To solve the challenge of single-channel blind image separation (BIS) caused by unknown prior knowledge during the separation process, we propose a BIS method based on cascaded generative adversarial networks (GANs). To ensure that the proposed method can perform well in different scenarios and to address the problem of an insufficient number of training samples, a synthetic network is added to the separation network. This method is composed of two GANs: a U-shaped GAN (UGAN), which is used to learn image synthesis, and a pixel-to-attention GAN (PAGAN), which is used to learn image separation. The two networks jointly complete the task of image separation. UGAN uses the unpaired mixed image and the unmixed image to learn the mixing style, thereby generating an image with the “true” mixing characteristics which addresses the problem of an insufficient number of training samples for the PAGAN. A self-attention mechanism is added to the PAGAN to quickly extract important features from the image data. The experimental results show that the proposed method achieves good results on both synthetic image datasets and real remote sensing image datasets. Moreover, it can be used for image separation in different scenarios which lack prior knowledge and training samples.
Funder
Natural Science Foundation of China
Natural Science Foundation of Shandong
A Project of Shandong Province Higher Educational Science and Technology Key Program
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献