RLSchert: An HPC Job Scheduler Using Deep Reinforcement Learning and Remaining Time Prediction

Author:

Wang QiqiORCID,Zhang HongjieORCID,Qu ChengORCID,Shen Yu,Liu Xiaohui,Li Jing

Abstract

The job scheduler plays a vital role in high-performance computing platforms. It determines the execution order of the jobs and the allocation of resources, which in turn affect the resource utilization of the entire system. As the scale and complexity of HPC continue to grow, job scheduling is becoming increasingly important and difficult. Existing studies relied on user-specified or regression techniques to give fixed runtime prediction values and used the values in static heuristic scheduling algorithms. However, these approaches require very accurate runtime predictions to produce better results, and fixed heuristic scheduling strategies cannot adapt to changes in the workload. In this work, we propose RLSchert, a job scheduler based on deep reinforcement learning and remaining runtime prediction. Firstly, RLSchert estimates the state of the system by using a dynamic job remaining runtime predictor, thereby providing an accurate spatiotemporal view of the cluster status. Secondly, RLSchert learns the optimal policy to select or kill jobs according to the status through imitation learning and the proximal policy optimization algorithm. Extensive experiments on real-world job logs at the USTC Supercomputing Center showed that RLSchert is superior to static heuristic policies and outperforms the learning-based scheduler DeepRM. In addition, the dynamic predictor gives a more accurate remaining runtime prediction result, which is essential for most learning-based schedulers.

Funder

the Strategic Priority Research Program of the Chinese 656 Academy of Sciences

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference34 articles.

1. A survey of high-performance computing scaling challenges

2. Theory and Practice in Parallel Job Scheduling;Feitelson,1997

3. NP-complete scheduling problems

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3