Development of Multi-Item Air Quality Monitoring System Based on Real-Time Data

Author:

Park Beomseok,Kim Sebin,Park Seoryeong,Kim Minji,Kim Tae Yoo,Park HanbaiORCID

Abstract

Many air pollutants are inhaled by human breathing, increasing the prevalence of respiratory disease and even mortality. With the recent COVID-19 issue, the number of air pollutants affecting humans is demands further investigation. However, there are not many adequate air measuring devices that can cover a variety of air pollutants. In this study, the developed air measurement system is able to measure sixteen air pollutants (PM10, PM2.5, PM4.0, PM1.0, CO2, CH4, temperature, humidity, VOCs, O2, H2S, NH3, SO2, CO, O3, NO2) in real time. The developed ‘multi-item air quality monitoring system’ can measure sixteen air pollutants in real time and transmit them to the server and the smartphone application at the same time. It was developed to reduce air pollutant damage to humans by emergency alerts using the smartphone application. The development system is composed of hardware development (measurement device) and software development (smartphone application, server). To verify the reliability of the developed equipment, a comparative test, temperature–humidity accuracy test, and operating temperature test were conducted. In the comparative test, difference ratios of ±5% for PM10, ±6% for PM2.5, ±4% for O3, ±5% for NO2, ±7% for CO, and ±7% for SO2 were found compared to the professional measuring devices. The temperature and humidity accuracy test result showed high reliability at ±1% and humidity ± 2%. The result of the operating temperature test showed that there was no problem in normal operation, However, further tests including the long-term comparative test and the closed chamber test will be carried out for all sensors. Additional work including a long-term test for more clear reliability of the device and closed chamber accuracy test for all 16-item sensors, data acquisition rate, and data transmit rate are in progress for commercializing the device.

Funder

Korea Environmental Industry & Technology Institute

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental assessment of pollutant emissions from residential fuel cells and comparative benchmark analysis;Journal of Environmental Management;2024-05

2. Development of a Smart Device to Measure Extreme Temperature and air Pollution;2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG);2024-04-02

3. Artificial Neural Network Based Prediction of PM2.5 Mass Concentration;2023 29th International Conference on Telecommunications (ICT);2023-11-08

4. Advances in Gaseous and Particulate Air Pollutants Measurement;Applied Sciences;2023-06-23

5. Chemiresistors with In2O3 Nanostructured Sensitive Films Used for Ozone Detection at Room Temperature;Gels;2023-04-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3