Abstract
Amphoteric amphiphilic compounds, due to their unique properties, may represent a group of safe and biocompatible surface-active agents for effective colloidal stabilization of nanoformulations. For this reason, the aim of this work was to develop and characterize the oil-in-water nanoemulsions based on two betaine-derived surfactants with high biodegradability, i.e., cocamidopropyl betaine and coco-betaine. In the first step, we investigated ternary phase diagrams of surfactant-oil-water systems containing different weight ratios of surfactant and oil, as the betaine-type surfactant entity (S), linoleic acid, or oleic acid as the oil phase (O), and the aqueous phase (W) using the titration-ultrasound approach. All the received nanoemulsion systems were then characterized upon droplets size (dynamic light scattering), surface charge (electrophoretic light scattering), and morphology (transmission electron as well as atomic force microscopy). Thermal and spinning tests revealed the most stable compositions, which were subjected to further kinetic stability analysis, including turbidimetric evaluation. Finally, the backscattering profiles revealed the most promising candidate with a size <200 nm for potential delivery of active agents in the future cosmetic, pharmaceutical, and biomedical applications.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献