Single Crystalline Higher Manganese Silicide Nanowire Arrays with Outstanding Physical Properties through Double Tube Chemical Vapor Deposition

Author:

Shen Chin-Li,Yang Shu-Meng,Lu Kuo-ChangORCID

Abstract

In this work, we report a novel and efficient silicidation method to synthesize higher manganese silicide (HMS) nanowires with interesting characterization and physical properties. High density silicon nanowire arrays fabricated by chemical etching reacted with MnCl2 precursor through a unique double tube chemical vapor deposition (CVD) system, where we could enhance the vapor pressure of the precursor and provide stable Mn vapor with a sealing effect. It is crucial that the method enables the efficient formation of high quality higher manganese silicide nanowires without a change in morphology and aspect ratio during the process. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were utilized to characterize the HMS nanowires. High-resolution TEM studies confirm that the HMS nanowires were single crystalline Mn27Si47 nanowires of Nowotny Chimney Ladder crystal structures. Magnetic property measurements show that the Mn27Si47 nanowire arrays were ferromagnetic at room temperature with a Curie temperature of over 300 K, highly depending on the relationship between the direction of the applied electric field and the axial direction of the standing nanowire arrays. Field emission measurements indicate that the 20 μm long nanowires possessed a field enhancement factor of 3307. The excellent physical properties of the HMS nanowires (NWs) make them attractive choices for applications in spintronic devices and field emitters.

Funder

Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3