Well-Defined Thermo-Responsive Copolymers Based on Oligo(Ethylene Glycol) Methacrylate and Pentafluorostyrene for the Removal of Organic Dyes from Water

Author:

Zuppardi Federica,Malinconico Mario,D’Agosto FranckORCID,D’Ayala Giovanna Gomez,Cerruti PierfrancescoORCID

Abstract

Thermo-responsive copolymers based on oligo(ethylene glycol) methacrylate (OEGMA, Mn = 300 g/mol) and pentafluorostyrene (PFS), coded PFG, were synthesized by RAFT polymerization, using a trithiocarbonate (CTTPC) as controlling agent. Different molar masses were targeted and dispersities lower than 1.51 were obtained. The thermally triggered self-assembly of the resulting PFG copolymers in water was investigated by dynamic light scattering (DLS). The lower critical solution temperature (LCST) slightly increased with the molecular weight in the 26–30 °C temperature range, whereas the sizes of the intermicellar aggregates formed upon self-assembly tended to decrease with increasing molecular weights (ranging from 1415 to 572 nm). The resulting thermally-induced polymer aggregates were then used to encapsulate and remove organic contaminants from water. Nile Red (NR) and Thiazole yellow G (TYG) were employed as hydrophobic and hydrophilic model contaminants, respectively. Experimental results evidenced that higher molecular weight copolymers removed up to 90% of NR from aqueous solution, corresponding to about 10 mg of dye per g of copolymer, regardless of NR concentration. The removal of TYG was lower with respect to NR, decreasing from about 40% to around 20% with TYG concentration. Finally, the copolymers were shown to be potentially recycled and reused in the treatment of contaminated water.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference55 articles.

1. Non-linear PEG-based thermoresponsive polymer systems

2. Thermo- and pH-responsive polymers in drug delivery☆

3. Temperature and pH stimuli-responsive polymers and their applications in controlled and self-regulated drug delivery;Almeida;J. Appl. Pharm.,2010

4. Smart Polymers and Their Applications;Aguilar,2014

5. Thermo-responsive polymers and their application as smart biomaterials

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3