Fast and Accurate Finite Transducer Analysis Method for Wireless Passive Impedance-Loaded SAW Sensors

Author:

Luo Wei,Yuan YangORCID,Wang Yi,Fu Qiuyun,Xia Hui,Li Honglang

Abstract

An accurate and fast simulation tool plays an important role in the design of wireless passive impedance-loaded surface acoustic wave (SAW) sensors which have received much attention recently. This paper presents a finite transducer analysis method for wireless passive impedance-loaded SAW sensors. The finite transducer analysis method uses a numerically combined finite element method-boundary element method (FEM/BEM) model to analyze non-periodic transducers. In non-periodic transducers, FEM/BEM was the most accurate analysis method until now, however this method consumes central processing unit (CPU) time. This paper presents a faster algorithm to calculate the bulk wave part of the equation coefficient which usually requires a long time. A complete non-periodic FEM/BEM model of the impedance sensors was constructed. Modifications were made to the final equations in the FEM/BEM model to adjust for the impedance variation of the sensors. Compared with the conventional method, the proposed method reduces the computation time efficiently while maintaining the same high degree of accuracy. Simulations and their comparisons with experimental results for test devices are shown to prove the effectiveness of the analysis method.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3