2D Newton Schwarz Legendre Collocation Method for a Convection Problem

Author:

Martínez DaríoORCID,Herrero HenarORCID,Pla FranciscoORCID

Abstract

In this work, an alternate Schwarz domain decomposition method is proposed to solve a Rayleigh–Bénard problem. The problem is modeled with the incompressible Navier–Stokes equations coupled with a heat equation in a rectangular domain. The Boussinesq approximation is considered. The nonlinearity is solved with Newton’s method. Each iteration of Newton’s method is discretized with an alternating Schwarz scheme, and each Schwarz problem is solved with a Legendre collocation method. The original domain is divided into several subdomains in both directions of the plane. Legendre collocation meshes are coarse, so the problem in each subdomain is well conditioned, and the size of the total mesh can grow by increasing the number of subdomains. In this way, the ill conditioning of Legendre collocation is overcome. The present work achieves an efficient alternating Schwarz algorithm such that the number of subdomains can be increased indefinitely in both directions of the plane. The method has been validated with a benchmark with numerical solutions obtained with other methods and with real experiments. Thanks to this domain decomposition method, the aspect ratio and Rayleigh number can be increased considerably by adding subdomains. Rayleigh values near to the turbulent regime can be reached. Namely, the great advantage of this method is that we obtain solutions close to turbulence, or in domains with large aspect ratios, by solving systems of linear equations with well-conditioned matrices of maximum size one thousand. This is an advantage over other methods that require solving systems with huge matrices of the order of several million, usually with conditioning problems. The computational cost is comparable to other methods, and the code is parallelizable.

Funder

Ministerio de Ciencia e Innovación

Universidad de Castilla-La Mancha

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3