Accelerating Extreme Search of Multidimensional Functions Based on Natural Gradient Descent with Dirichlet Distributions

Author:

Abdulkadirov RuslanORCID,Lyakhov PavelORCID,Nagornov NikolayORCID

Abstract

The high accuracy attainment, using less complex architectures of neural networks, remains one of the most important problems in machine learning. In many studies, increasing the quality of recognition and prediction is obtained by extending neural networks with usual or special neurons, which significantly increases the time of training. However, engaging an optimization algorithm, which gives us a value of the loss function in the neighborhood of global minimum, can reduce the number of layers and epochs. In this work, we explore the extreme searching of multidimensional functions by proposed natural gradient descent based on Dirichlet and generalized Dirichlet distributions. The natural gradient is based on describing a multidimensional surface with probability distributions, which allows us to reduce the change in the accuracy of gradient and step size. The proposed algorithm is equipped with step-size adaptation, which allows it to obtain higher accuracy, taking a small number of iterations in the process of minimization, compared with the usual gradient descent and adaptive moment estimate. We provide experiments on test functions in four- and three-dimensional spaces, where natural gradient descent proves its ability to converge in the neighborhood of global minimum. Such an approach can find its application in minimizing the loss function in various types of neural networks, such as convolution, recurrent, spiking and quantum networks.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference24 articles.

1. AdaGrad Stepsizes: Sharp Convergence Over Nonconvex Landscapes;Ward;J. Mach. Learn. Res.,2020

2. Adaptive subgradient methods for online learning and stochastic optimization;Duchi;J. Mach. Learn. Res.,2011

3. Convergence of the RMSProp deep learning method with penalty for nonconvex optimization

4. Genetic Optimization Method of Pantograph and Catenary Comprehensive Monitor Status Prediction Model Based on Adadelta Deep Neural Network

5. The BP Neural Network with Adam Optimizer for Predicting Audit Opinions of Listed Companies;Wu;IAENG Int. J. Comput. Sci.,2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3