Adaptation of Staphylococcus aureus in a Medium Mimicking a Diabetic Foot Environment

Author:

Pouget Cassandra,Gustave Claude-AlexandreORCID,Ngba-Essebe Christelle,Laurent Frédéric,Lemichez Emmanuel,Tristan Anne,Sotto AlbertORCID,Dunyach-Rémy CatherineORCID,Lavigne Jean-PhilippeORCID

Abstract

Staphylococcus aureus is the most prevalent pathogen isolated from diabetic foot infections (DFIs). The purpose of this study was to evaluate its behavior in an in vitro model mimicking the conditions encountered in DFI. Four clinical S. aureus strains were cultivated for 16 weeks in a specific environment based on the wound-like medium biofilm model. The adaptation of isolates was evaluated as follows: by Caenorhabditis elegans model (to evaluate virulence); by quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) (to evaluate expression of the main virulence genes); and by Biofilm Ring test® (to assess the biofilm formation). After 16 weeks, the four S. aureus had adapted their metabolism, with the development of small colony variants and the loss of β-hemolysin expression. The in vivo nematode model suggested a decrease of virulence, confirmed by qRT-PCRs, showing a significant decrease of expression of the main staphylococcal virulence genes tested, notably the toxin-encoding genes. An increased expression of genes involved in adhesion and biofilm was noted. Our data based on an in vitro model confirm the impact of environment on the adaptation switch of S. aureus to prolonged stress environmental conditions. These results contribute to explore and characterize the virulence of S. aureus in chronic wounds.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3