Effects of Increasing C4-Crop Cover and Stomatal Conductance on Evapotranspiration: Simulations for a Lake Erie Watershed

Author:

Senevirathne Chathuranga Kumara,Simic Milas AnitaORCID,Liu GanmingORCID,Yacobucci Margaret MaryORCID,Marambe Yahampath Anuruddha

Abstract

Accurate quantification of evapotranspiration (ET) is crucial for surface water resources and best agricultural management practices in watersheds. The aim of this study was to better understand ET changes caused by the rapid expansion of C4 (corn) cover and rapid changes in stomatal conductance, which may be amplified in the future due to environmental and human-contributing factors, such as climate change and agricultural practices. Linking the enlargement of agricultural land with the physiological properties of crops, such as photosynthetic adaptations and stomatal conductance, is necessary to explore the magnitude of these impacts. This study examined the effects of increased C4 (corn) crop cover and stomatal conductance on evapotranspiration (ET) rates in the Lower Maumee River Watershed, Ohio, USA, during the 2018 growing season. Simulation results using a modified-for-crops version of the Boreal Ecosystem Productivity Simulator (BEPS) showed that a hypothetical increase of corn cover by as much as 100% would not significantly impact the watershed ET rate, with a 5.05% overall increase in ET in July and a 3.96% increase in August. Changes in the stomatal conductance of crops, however, impacted ET more. The results showed a significant increase in the ET rate (up to 24.04% for corn and 5.10% for soybean) for the modeling scenario that integrated high stomatal conductance, which agreed with the thermal-based ECOSTRESS ET product derived over the study area (+/−0.9 mm day−1) for the same period. We suggest that the alteration of the crop stomata mechanism, caused largely by rapid climate change and intensive farming practices, should be carefully quantified, and its impact on hydrology at the ecosystem level further explored.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference96 articles.

1. Global Hydrological Cycles and World Water Resources

2. Evapotranspiration Basics and Estimating Actual Crop Evapotranspiration from Reference Evapotranspiration and Crop-Specific Coefficients; G1994 Index: Crops, Irrigation Engineering—UNL Extension 2017https://extensionpublications.unl.edu/assets/pdf/g1994.pdf

3. Net primary productivity mapped for Canada at 1-km resolution

4. Mapping evapotranspiration based on remote sensing: An application to Canada's landmass

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3