A Self-Regulating Multi-Clutter Suppression Framework for Small Aperture HFSWR Systems

Author:

Ji Xiaowei,Yang Qiang,Wang Linwei

Abstract

The problem that this paper is concerned with is High Frequency Surface Wave Radar (HFSWR) detection of desired targets against a complex interference background consisting of sea clutter, ionosphere clutter, Radio Frequency Interference (RFI) and atmospheric noise. Eliminating unwanted echoes and exploring obscured targets contribute to achieving ideal surveillance of sea surface targets. In this paper, a Self-regulating Multi-clutter Suppression Framework (SMSF) has been proposed for small aperture HFSWR. SMSF can remove many types of clutter or RFI; meanwhile, it mines the targets merged into clutter and tracks the travelling path of the ship. In SMSF, a novel Dynamic Threshold Mapping Recognition (DTMR) method is first proposed to reduce the atmospheric noise and recognize each type of unwanted echo; these recognized echoes are fed into the proposed Adaptive Prophase-current Dictionary Learning (APDL) algorithm. To make a comprehensive evaluation, we also designed three novel assessment parameters: Obscured Targets Detection Rate (OTDR), Clutter Purification Rate (CPR) and Erroneous Suppression Rate (ESR). The experiment data collected from a small aperture HFSWR system confirm that SMSF has precise suppression performance over most of the classical algorithms and concurrently reveals the moving targets, and OTDR of SMSF is usually higher than compared methods.

Funder

National Natural Science Foundation of China

Hainan Province Key Research and Development Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3