Automatic Building Extraction from Google Earth Images under Complex Backgrounds Based on Deep Instance Segmentation Network

Author:

Wen QiORCID,Jiang Kaiyu,Wang Wei,Liu Qingjie,Guo Qing,Li Lingling,Wang Ping

Abstract

Building damage accounts for a high percentage of post-natural disaster assessment. Extracting buildings from optical remote sensing images is of great significance for natural disaster reduction and assessment. Traditional methods mainly are semi-automatic methods which require human-computer interaction or rely on purely human interpretation. In this paper, inspired by the recently developed deep learning techniques, we propose an improved Mask Region Convolutional Neural Network (Mask R-CNN) method that can detect the rotated bounding boxes of buildings and segment them from very complex backgrounds, simultaneously. The proposed method has two major improvements, making it very suitable to perform building extraction task. Firstly, instead of predicting horizontal rectangle bounding boxes of objects like many other detectors do, we intend to obtain the minimum enclosing rectangles of buildings by adding a new term: the principal directions of the rectangles θ. Secondly, a new layer by integrating advantages of both atrous convolution and inception block is designed and inserted into the segmentation branch of the Mask R-CNN to make the branch to learn more representative features. We test the proposed method on a newly collected large Google Earth remote sensing dataset with diverse buildings and very complex backgrounds. Experiments demonstrate that it can obtain promising results.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3