Double Deep Q-Network with Dynamic Bootstrapping for Real-Time Isolated Signal Control: A Traffic Engineering Perspective

Author:

Zheng QimingORCID,Xu Hongfeng,Chen Jingyun,Zhang DongORCID,Zhang KunORCID,Tang Guolei

Abstract

Real-time isolated signal control (RISC) at an intersection is of interest in the field of traffic engineering. Energizing RISC with reinforcement learning (RL) is feasible and necessary. Previous studies paid less attention to traffic engineering considerations and under-utilized traffic expertise to construct RL tasks. This study profiles the single-ring RISC problem from the perspective of traffic engineers, and improves a prevailing RL method for solving it. By qualitative applicability analysis, we choose double deep Q-network (DDQN) as the basic method. A single agent is deployed for an intersection. Reward is defined with vehicle departures to properly encourage and punish the agent’s behavior. The action is to determine the remaining green time for the current vehicle phase. State is represented in a grid-based mode. To update action values in time-varying environments, we present a temporal-difference algorithm TD(Dyn) to perform dynamic bootstrapping with the variable interval between actions selected. To accelerate training, we propose a data augmentation based on intersection symmetry. Our improved DDQN, termed D3ynQN, is subject to the signal timing constraints in engineering. The experiments at a close-to-reality intersection indicate that, by means of D3ynQN and non-delay-based reward, the agent acquires useful knowledge to significantly outperform a fully-actuated control technique in reducing average vehicle delay.

Funder

National Natural Science Foundation of China

Humanities and Social Science Foundation of Ministry of Education of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3