Detailed Analysis of Gamma-Shielding Characteristics of Ternary Composites Using Experimental, Theoretical and Monte Carlo Simulation Methods

Author:

Özdoğan Hasan1ORCID,Üncü Yiğit Ali2ORCID,Akman Ferdi3,Polat Hasan4,Kaçal Mustafa Recep5

Affiliation:

1. Department of Medical Imaging Techniques, Vocational School of Health Services, Antalya Bilim University, 07190 Antalya, Turkey

2. Department of Biomedical Equipment Technology, Vocational School of Technical Sciences, Akdeniz University, 07070 Antalya, Turkey

3. Program of Occupational Health and Safety, Department of Property Protection and Security, Vocational School of Social Sciences, Bingöl University, 12000 Bingöl, Turkey

4. Department of Architecture and Urban Planning, Vocational School of Technical Sciences, Bingöl University, 12000 Bingöl, Turkey

5. Department of Physics, Arts and Sciences Faculty, Giresun University, 28100 Giresun, Turkey

Abstract

Ionizing radiation is vital in various fields but poses health risks, necessitating effective shielding. This study investigated the photon-shielding properties of polyester-based ternary composites with barite (BaSO4) and tungsten (W) using experimental methods, theoretical calculations, and Monte Carlo simulations for energies between 81 keV and 1332.5 keV. WINXCOM was utilized for the theoretical predictions, and the MCNP6 and PHITS 3.22 algorithms were employed for the simulations. According to the results, the simulation, theoretical, and experimental data all closely aligned. At 81 keV, the composite containing the highest amount of tungsten (PBaW50) had the highest mass attenuation coefficient (3.7498 cm2/g) and linear attenuation coefficient (12.9676 cm−1). Furthermore, for a sample that was 1 cm thick, PBaW50 offered 99.88% protection at 81 keV and had the lowest HVL and TVL values. PBaW50 exhibited attenuation capabilities, making it appropriate for use in industrial, medical, and aerospace settings. In summary, the findings of this study underscore the potential of polyester-based composites doped with barite and tungsten as effective materials for gamma radiation shielding. The PBaW50 sample, in particular, stands out for its attenuation performance, making it a viable option for a wide range of applications where durable and efficient radiation shielding is essential.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3