Enhanced Crystallization of Sustainable Polylactic Acid Composites Incorporating Recycled Industrial Cement

Author:

Lee Yong-Min1,Kim Kwan-Woo1,Yang Jae-Yeon1,Kim Byung-Joo23ORCID

Affiliation:

1. Research & Development Division, Korea Carbon Industry Promotion Agency, Jeonju 54852, Republic of Korea

2. Department of Materials Science and Chemical Engineering, Jeonju University, Jeonju 55069, Republic of Korea

3. Material Application Research Institute, Jeonju University, Jeonju 55069, Republic of Korea

Abstract

Globally, the demand for single-use plastics has increased due to the rising demand for food delivery and household goods. This has led to environmental challenges caused by indiscriminate dumping and disposal. To address this issue, non-degradable plastics are being replaced with biodegradable alternatives. Polylactic acid (PLA) is a type of biodegradable plastic that has excellent mechanical properties. However, its applications are limited due to its low crystallinity and brittleness. Studies have been conducted to combat these limitations using carbon or inorganic nucleating agents. In this study, waste cement and PLA were mixed to investigate the effect of the hybrid inorganic nucleating agent on the crystallinity and mechanical properties of PLA. Waste cement accelerated the lamellar growth of PLA and improved its crystallinity. The results indicate that the flexural and impact strengths increased by approximately 3.63% and 76.18%, respectively.

Funder

Ministry of Trade, Industry and Energy, Republic of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3