Adsorption of Chromium (III) and Chromium (VI) Ions from Aqueous Solution Using Chitosan–Clay Composite Materials

Author:

Majigsuren Enkhtuya1,Byambasuren Ulziidelger1,Bat-Amgalan Munkhpurev12,Mendsaikhan Enkhtuul12,Kano Naoki2ORCID,Kim Hee Joon3ORCID,Yunden Ganchimeg1ORCID

Affiliation:

1. Department of Chemical Engineering, School of Applied Sciences, Mongolian University of Science and Technology, Ulaanbaatar 14191, Mongolia

2. Department of Chemistry and Chemical Engineering, Faculty of Engineering, Niigata University, Niigata 950-2181, Japan

3. Department of Environmental Chemistry and Chemical Engineering, School of Advanced, Engineering, Kogakuin University, Tokyo 192-0015, Japan

Abstract

In this work, biopolymer chitosan and natural clay were used to obtain composite materials. The overall aim of this study was to improve the properties (porosity, thermal stability and density) of pure chitosan beads by the addition of clay and to obtain a chitosan-based composite material for the adsorption of heavy metals from an aqueous solution, using Mongolian resources, and to study the adsorption mechanism. The natural clay was pre-treated with acid and heat to remove the impurities. The chitosan and pre-treated clay were mixed in different ratios (8:1, 8:2 and 8:3) for chemical processing to obtain a composite bead for the adsorption of chromium ions. The adsorption of Cr(III) and Cr(VI) was studied as a function of the solution pH, time, temperature, initial concentration of the chromium solution and mass of the composite bead. It was found that the composite bead obtained from the mixture of chitosan and treated clay with a mass ratio of 8:1 and 8:2 had the highest adsorption capacity (23.5 and 17.31 mg·g−1) for Cr(III) and Cr(VI), respectively, in the optimum conditions. The properties of the composite materials, prepared by mixing chitosan and clay with a ratio of 8:1 and 8:2, were investigated using XRD, SEM–EDS, BET and TG analysis. The adsorption mechanism was discussed based on the XPS analysis results. It was confirmed that the chromium ions were adsorbed in their original form, such as Cr(III) and Cr(VI), without undergoing oxidation or reduction reactions. Furthermore, Cr(III) and Cr(VI) were associated with the hydroxyl and amino groups of the composite beads during adsorption. The kinetic, thermodynamic and isothermal analysis of the adsorption process revealed that the interaction between the chitosan/clay composite bead and Cr(III) and Cr(VI) ions can be considered as a second-order endothermic reaction, as such the adsorption can be assessed using the Langmuir isotherm model. It was concluded that the composite bead could be used as an adsorbent for the removal of chromium ions.

Funder

Mongolian University of Science and Technology

M-JEED

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3