Mechanical Properties of Latex-Modified Cement Stone under Uniaxial and Triaxial Cyclic Loading

Author:

Tian Qizhong12ORCID,Yang Lianzhi3ORCID,Zhang Jie3,Xing Zhenzhong3

Affiliation:

1. Institute of Ocean Engineering and Technology, Ocean College, Zhejiang University, Zhoushan 316021, China

2. Petroleum Engineering Technology Research Institute, Sinopec Shengli Oilfield Company, Dongying 257001, China

3. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

During the cyclic injection and extraction process in underground storage wellbores, the cement sheath undergoes loading and unloading stress cycles. In this study, we investigated the mechanical properties of latex-modified cement stone (LMCS), widely used in oil and gas wells, through uniaxial and triaxial cyclic loading and unloading tests. The aim of the study was to determine the effect of various loading conditions on the compressive strength and stress–strain behavior of LMCS. The results show that the stress–strain curve of LMCS exhibits a hysteresis loop phenomenon, with the loop intervals decreasing throughout the entire cyclic loading and unloading process. As the number of cycles increases, the cumulative plastic strain of the LMCS increases approximately linearly. Under uniaxial cyclic loading and unloading conditions, the elastic modulus tends to stabilize. However, under triaxial conditions, the elastic modulus increases continuously as the number of cycles increases. This result provides data for engineering predictions. Furthermore, a comparison of the uniaxial and triaxial cyclic loading and unloading of LMCS shows that its cumulative plastic strain develops rapidly under uniaxial conditions, while the elastic modulus is larger under triaxial conditions. These findings provide a valuable reference for constructing underground storage wellbores.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3