Affiliation:
1. Department of Civil Engineering, University of Texas, Arlington, TX 76006, USA
2. Department of Mechanical and Aerospace Engineering, University of Texas, Arlington, TX 76006, USA
Abstract
Pultruded fiber reinforced polymer composites used in civil, power, and offshore/marine applications use fillers as resin extenders and for process efficiency. Although the primary use of fillers is in the form of an extender and processing aid, the appropriate selection of filler can result in enhancing mechanical performance characteristics, durability, and multifunctionality. This is of special interest in structural and high voltage applications where the previous use of specific fillers has been at levels that are too low to provide these enhancements. This study investigates the use of montmorillonite organoclay fillers of three different particle sizes as substitutes for conventional CaCO3 fillers with the intent of enhancing mechanical performance and hygrothermal durability. The study investigates moisture uptake and kinetics and reveals that uptake is well described by a two-stage process that incorporates both a diffusion dominated initial phase and a second slower phase representing relaxation and deterioration. The incorporation of the organoclay particles substantially decreases uptake levels in comparison to the use of CaCO3 fillers while also enhancing stage I, diffusion, dominated stability, with the use of the 1.5 mm organoclay fillers showing as much as a 41.5% reduction in peak uptake as compared to the CaCO3 fillers at the same 20% loading level (by weight of resin). The mechanical performance was characterized using tension, flexure, and short beam shear tests. The organoclay fillers showed a significant improvement in each, albeit with differences due to particle size. Overall, the best performance after exposure to four different temperatures of immersion in deionized water was shown by the 4.8 mm organoclay filler-based E-glass/vinylester composite system, which was the only one to have less than a 50% deterioration over all characteristics after immersion for a year in deionized water at the highest temperature investigated (70 °C). The fillers not only enhance resistance to uptake but also increase tortuosity in the path, thereby decreasing the overall effect of uptake. The observations demonstrate that the use of the exfoliated organoclay particles with intercalation, which have been previously used in very low amounts, and which are known to be beneficial in relation to enhanced thermal stability, flame retardancy, and decreased flammability, provide enhanced mechanical characteristics, decreased moisture uptake, and increased hygrothermal durability when used at particle loading levels comparable to those of conventional fillers, suggesting that these novel systems could be considered for critical structural applications.