Practical LAI Estimation with DHP Images in Complex Forest Structure with Rugged Terrain

Author:

Lee Junghee1ORCID,Cha Sungeun1,Lim Joongbin1ORCID,Chun Junghwa2,Jang Keunchang2

Affiliation:

1. Forest ICT Research Center, National Institute of Forest Science, Seoul 02455, Republic of Korea

2. Department of Forest Environment and Conservation, National Institute of Forest Science, Seoul 02455, Republic of Korea

Abstract

Leaf area index is a key structural parameter for biological and physical processes. Korea is planning to launch CAS500-4 in 2025, so in situ data is needed to validate the leaf area index. Unlike other networks (e.g., NEON and TERN), establishing an elementary sampling unit is difficult in Korea due to the complex forest structure and rugged terrain. Therefore, pixel-level correspondence between the satellite product and fisheye footprints is the best way to verify in complex terrain. In this study, we analyzed the spatial footprint of fisheye lenses in different forest types using terrestrial LiDAR data for the first time. The three-dimensional forest structure was analyzed at various viewing zenith angles, and the footprint radius was approximately 3 m at view zenith angle (VZA) 20° and approximately 10 m at VZA 90°. We also analyzed the Z-values from terrestrial laser data and the plant area index on leafless seasons to assess the impact of obstacles, such as tree trunks, under various viewing zenith angles. The analysis showed that the influence of woody components increases dramatically as the VZA exceeds 40°. Such factors influenced the increase in LAI and the decrease in the clumping index as the VZA increased. Overall, we concluded that narrowing VZA between 20° and 40° is appropriate for Korean forests with complex structures.

Funder

National Institute of Forest Science, Republic of Korea

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3